<<
>>

9.3. ТРОФИЧЕСКАЯ СТРУКТУРА ЭКОСИСТЕМЫ

В результате рассеяния энергии в пищевых цепях и благодаря такому фактору, как зависимость метаболизма от размера особей, каждое сообщество приобретает определенную трофическую структуру, которую можно выразить либо числом особей на каждом трофическом уровне, либо урожаем на корню (на единицу площади), либо количеством энергии, фиксируемой на единице площади за единицу времени на каждом последующем трофическом уровне.

Графически это можно представить в виде пирамиды, основанием которой служит первый трофический уровень, а последующие образуют этажи и вершину пирамиды. Различают три основных типа экологических пирамид — пирамиды чисел, биомассы и энергии.

Пирамида чисел, или распределение особей по трофическим уровням, зависит от следующих факторов: В любой экосистеме мелкие животные численно превосходят  крупных и размножаются быстрее. Для всякого хищного животного существуют нижний и верхний пределы размеров их жертв. Верхний предел определяется тем, что хищник не в состоянии одолеть животное, намного превышающее по размеру его

собственное тело, нижний предел – тем, что при слишком малом размере добычи, охота на нее теряет для хищников какой-либо смысл. Мелкую добычу хищникам пришлось бы ловить в таких огромных количествах, что это оказалось бы почти невозможным либо ввиду ее недостатка, либо нехватки времени. Поэтому для хищников каждого вида, как правило, пищей служат жертвы оптимального размера.

Для поддержания жизни одного льва требуется 50 зебр в год. На Фолклендских островах кулик-сорока на скалах во вре-

163

мя отлива добывает брюхоногого моллюска «блюдечко», но может справиться только с особями среднего размера; моллюски, размер которых превышает 45 мм, от него ускользают.

Однако из этого правила есть исключения. Волки, охотясь сообща, могут убивать жертву более крупную, чем они сами, например оленей.

Пауки и змеи, обладая свойством выделять яд, убивают крупных животных. Единственным же видом, способным использовать в пищу животных любой величины, является человек.

В случае пастбищных пищевых цепей леса, когда продуцентами служат деревья, а первичными консументами — насекомые, уровень первичных консументов численно богаче особями уровня продуцентов. Таким образом, пирамиды чисел могут быть обращенными. Для примера на рис. 9.7 приведены пирамиды чисел экосистем степи и леса умеренной зоны.

Рис. 9.7. Пирамида чисел для степи летом (1)

и для леса умеренной зоны летом (2) (из Одума, 1975).

Р — продуценты, С — консументы.

Пирамиды биомассы представляют более фундаментальный интерес, так как в них устранен «физический» фактор и четко показаны количественные соотношения биомасс. Если организмы не слишком сильно различаются по размеру, то, обозначив на трофических уровнях общую массу особей, можно получить ступенчатую пирамиду. Но если организмы низших уровней в среднем мельче организмов высших уровней, то имеет место обращенная пирамида биомассы. Например, в экосистемах с очень мелкими продуцентами и крупными консументами общая масса последних может быть в любой

164

class="lazyload" data-src="/files/uch_group36/uch_pgroup216/uch_uch794/image/114.jpg" alt="" />данный момент выше общей массы продуцентов. Для пирамид биомассы можно сделать несколько обобщений. Наземные и мелководные экосистемы, где продуценты крупные и живут сравнительно долго, характеризуются относительно устойчивыми пирамидами с широким основанием и узкой вершиной. На форму пирамиды подобных экосистем влияет также возраст сообщества.

В недавно возникших сообществах отношение биомассы консументов к биомассе продуцентов обычно меньше, чем в зрелых (т. е. вершина пирамиды будет более узкой). Объясняется это тем, что консументы наземных и мелководных сообществ имеют более сложные жизненные циклы и более «изощренные» требования к местообитанию (например, им нужны особые укрытия), чем зеленые растения. Поэтому животным популяциям может требоваться больше времени для максимального развития. В открытых и глубоких водах, где продуценты невелики по размеру и имеют короткий жизненный цикл, пирамида биомассы может быть обращенной. Общий урожай на корню здесь, как правило, меньше, чем в наземных или мелководных сообществах, даже если количество фиксируемой за год энергии в обоих случаях одинаково. В озерах и прудах, где равное значение как продуценты имеют и крупные прикрепленные растения, и микроскопические водоросли, пирамида урожая на корню будет иметь промежуточный вид.

Пирамида энергии из трех рассматриваемых типов экологических пирамид дает наиболее полное представление о функциональной организации сообщества, так как число и масса организмов, которые могут существовать на каждом трофическом уровне в тех или иных условиях, зависят не от количества фиксированной энергии, имеющейся в данное время на предыдущем уровне, а от скорости продуцирования пищи. В противоположность пирамидам чисел и биомассы, отражающим статику системы, т. е. характеризующим количество организмов или их биомассу в данный момент, пирамида энергии отра-

165

жает скорость прохождения массы пищи через пищевую цепь. На форму этой пирамиды не влияют изменения размеров особей и интенсивности их метаболизма, и если учтены все источники энергии, то пирамида всегда будет иметь «канонический» вид, как это диктуется вторым законом термодинамики.

Для того чтобы оценить достоинства модели пирамиды энергии, сравним пирамиды биомассы и энергии одной из немногих экосистем, для которых известны все компоненты сообщества, включая редуцентов, — экосистемы ручьев Силвер-Спрингс во Флориде (рис.9.8).

Продуценты в данной экосистеме представлены стрелолистом и прикрепленными водорослями. Среди кон-

Рис. 9.8. Пирамиды биомассы (1) и энергии (2) в системе

ручьев Силвер-Спрингс во Флориде (из Одума, 1975).

S —редуценты. Р, С — см. рис. 9.7.

сументов I порядка большое количество насекомых, брюхоногих моллюсков, растительноядных рыб и черепах. Различные виды рыб и хищные насекомые занимают следующий трофический уровень, а окунь, паразиты и панцирная щука - самый верхний уровень. Редуценты не только разлагают растительный материал, но уничтожают и органическое вещество других уровней: на пирамиде биомассы им соответствует линия, опирающаяся на первый трофический уровень. Биомасса бактерий и грибов очень мала по сравнению с их ролью в энергетическом потоке сообщества. Поэтому в пирамиде чисел значение редуцентов сильно преувеличено, а в пирамиде биомассы сильно преуменьшено. Исходя из данного положения, сформулируем «экологическое правило»: данные по численности приводят к преувеличению зна-

166

чения мелких организмов, а данные по биомассе — к преувеличению роли крупных организмов.

Следовательно, эти критерии непригодны для сравнения функциональной роли популяций, сильно различающихся по значению отношения интенсивности метаболизма к размеру особей, хотя, как правило, биомасса более надежный критерий, чем численность. В то же время поток энергии служит более подходящим показанием при сравнении компонента с любым другим и экосистемы в целом с соседней экосистемой.

Поток энергии в экосистеме представляет интерес не только для эколога, но и для каждого из нас. Объясняется это тем, что, уяснив основные законы превращения энергии, мы лучше поймем, почему природные экосистемы функционируют именно так, как они функционируют. Не менее важно и то, что такое знание поможет нам определить границы, за которыми наше воздействие на окружающую среду принесет ей непоправимый ущерб.

167

<< | >>
Источник: Бродский А. К.. Краткий курс общей экологии: Учебное пособие. 2000

Еще по теме 9.3. ТРОФИЧЕСКАЯ СТРУКТУРА ЭКОСИСТЕМЫ:

  1. Трофическая структура и экологические пирамиды
  2. Структура экосистемы
  3. ХЕМОРЕГУЛЯТОРЫ ПАСТБИЩНОЙ ТРОФИЧЕСКОЙ ЦЕПИ
  4. ХЕМОРЕГУЛЯТОРЫ ДЕТРИТНОЙ ТРОФИЧЕСКОЙ ЦЕПИ
  5. Пищевые цепи, пищевые сети и трофические уровни
  6. Т е м а 13 ХОРОЛОГИЧЕСКИЙ АСПЕКТ ИЗУЧЕНИЯ ЭКОСИСТЕМЫ
  7. Экосистема
  8. БИОТА. ЭКОСИСТЕМЫ И ЭКОСФЕРА
  9. Развитие и эволюция экосистемы
  10. Тема9 ЭНЕРГЕТИКА ЭКОСИСТЕМЫ
  11. IV.9. Агроценозы и естественные экосистемы
  12. 8.1. КОНЦЕПЦИЯ ЭКОСИСТЕМЫ
  13. 8.2. ГОМЕОСТАЗ ЭКОСИСТЕМЫ
  14. Пресноводные экосистемы