Парадокс Кондорсе
В 1996 г. перед первым туром президентских выборов в России по московскому радио передавали выступление избирателя, недовольного системой голосования. Он предлагал разрешить каждому избирателю не только голосовать за одного кандидата, но и упорядочивать всех кандидатов по своему предпочтению от лучшего к худшему.
Только после этого, утверждал выступавший, будет ясно истинное отношение населения России к кандидатам в президенты.Интересно, что большой интерес к разным системам голосования наблюдался примерно за 200 лет до этого во Франции. При этом ситуации в двух странах были близкими: и тут, и там происходил переход от тоталитаризма к новой системе, позволяющей каждому избирателю голосовать свободно и тайно.
Одним из первых, кто заинтересовался системами голосования, был французский ученый маркиз де Кондорсе (1743— 1794). Он сформулировал принцип или критерий, позволяющий определить победителя в демократических выборах. Принцип де Кондорсе состоит в следующем: кандидат, который
побеждает при сравнении один на один с любым из других кандидатов, является победителем на выборах.
Система голосования, предложенная де Кондорсе, совпадала с системой, которую предлагал 200 лет спустя избиратель в России. Каждый из голосующих упорядочивал кандидатов по степени своего желания видеть его победителем. Согласно де Кондорсе, справедливое определение победителя возможно путем попарного сравнения кандидатов по числу голосов, поданных за них. Принцип де Кондорсе предлагался как рациональный и демократический. Однако вскоре маркиз де Кондорсе столкнулся с парадоксом, получившим впоследствии его имя. Рассмотрим пример голосования в собрании представителей из 60 чел. [I]. Пусть на голосование поставлены три кандидата: А, В и С, и голоса распределились, как в табл. 16.
Таблица 16 Распределение голосов (парадокс Кондорсе)
Число голосующих | Предпочтения |
23 | А -gt; В -gt; С |
17 | В -gt; С -gt; А |
2 | В-gt; А-gt;С |
10 | С -gt; А -gt; В |
8 | С -gt; В -gt; А |
Сравним предпочтения по отношению к парам кандидатов.
Берем А и С: тогда А предпочитают 23+2=25; С по сравнению с А предпочитают: 17+10+8=35. Следовательно, С предпочтительнее А (С —gt; А ) по воле большинства.Сравнивая попарно аналогичным образом А и В, В и С, получаем: В -gt; С (42 против 18), С -gt; А (35 против 25) и А -gt; В (33 против 27). Следовательно, мы пришли к противоречию, к нетранзитивному отношению А —gt; В -gt; С -gt; А .
Столкнувшись с этим парадоксом, Кондорсе выбрал «наи- .еныпее зло», а именно то мнение, которое поддерживается большинством голосов (избранным следует считать А).
Еще по теме Парадокс Кондорсе:
- 1. ФИЛОСОФСКО-ИСТОРИЧЕСКИЕ ВОЗЗРЕНИЯ Вико, КОНДОРСЕ, ГЕГЕЛЯ, МАРКСА НА ПЕРИОДИЗАЦИЮ МИРОВОЙ ИСТОРИИ
- 10. Теория проспектов и парадокс Алле
- III. ПАРАДОКСЫ СТАЦИОНАРНОГО БЫТИЯ
- Парадокс Алле
- О так называемом парадоксе свободы
- 2. Парадоксы Зенона
- Часть 1. Любовь, влюбленность и семья (закономерности и парадоксы)
- Глава 2 ПАРАДОКСЫ ПСИХОЛОГИИ. ПУТЬ К СВОБОДНОМУ ДЕЙСТВИЮ
- Смысл парадокса в христианской теологии
- Парадоксы бытия
- 11. Новые парадоксы
- Анализ парадоксов. Идея логических типов.
- Парадоксы монастырской экономики
- §1. Парадокс проблемы смысла жизни.
- і. Парадокс Ницше. Против интерпретаций