<<
>>

Защита населения и территорий при авариях на радиационно (ядерно) опасных объектах с выбросом радиоактивных веществ в окружающую среду Аварии на радиационно (ядерно) опасных объектах и радиоактивное загрязнение окружающей среды

В России имели место и наиболее крупные в мире радиационные катастрофы.

29 сентября 1957 года на ПО «Маяк» (Челябинская обл.) в одной из технологических емкостей с высокоактивными жидкими отходами радиохимического производства (примерно 70 - 80 т) произошел тепловой взрыв, при котором образовалось радиоактивное облако.

Будучи поднятым в воздух до высоты 1 км, оно перемещалось по направлению ветра на северо-северо-восток. В результате осаждения радиоактивных аэрозолей на местности образовался радиоактивный след. Этот след, на котором осело около 2 МКи активности с начальной плотностью радиоактивного загрязнения на границе следа равной 0,1 Ки/км2 по 90Sr, захватил часть территории Челябинской, Свердловской и Курганской областей, имел ширину до 20-40 км и протяженность до 300 км, общую площадь 15-23 тыс. км2. В границах распространения радиоактивного следа на момент аварии проживало 270 тыс. человек. Авария привела к серьезным экологическим последствиям, потребовала принятия мер по защите населения.

В ночь с 25 по 26 апреля 1986 года произошла авария на Чернобыльской АЭС с разрушением реактора РБМК-1000 и выбросом радиоактивных веществ суммарной активности 5.107 Ки. Выброшенные из разрушенной активной зоны реактора в атмосферу радиоактивные продукты деления и частицы ядерного топлива были разнесены воздушными потоками на сотни и тысячи километров, приведя к радиоактивному загрязнению территории, в том числе стран Европы, и оказав негативное воздействие на окружающую среду и здоровье проживающего на них населения. В наибольшей степени радиоактивному загрязнению подверглись территории России, Белоруссии и Украины. В России общая площадь радиоактивно загрязненных территорий с плотностью загрязнения выше 1 Ки/км2 по цезию - 137 достигала почти 60 тыс. км2. На загрязненных территориях оказалось 7608 населенных пунктов, где проживало около 3 млн.

человек. В целом радиоактивному загрязнению подверглись территории в 16 областях России и трех республиках, на которых проживало около 30 млн. человек.

Эта катастрофа привела к радиоактивному загрязнению огромных территорий, серьезным экологическим последствиям, затронула судьбы многих миллионов людей, проживающих на этих территориях, а для России, Белоруссии и Украины стала общенародным бедствием.

В настоящее время практически любая отрасль хозяйства и науки использует радиоактивные вещества и источники ионизирующих излучений. Высокими темпами развивается ядерная энергетика.

По мере того как Соединенные Штаты Америки и Россия сокращали свои запасы ядерного оружия и повышали безопасность остающихся арсеналов, во всем мире возрастал интерес к более широкому использованию атомной энергии в мирных целях. Трагедии в Чернобыле и на АЭС на острове Три-Майл привели к замедлению этой тенденции, однако благодаря созданию новых технологий появились значительные возможности для развития этой отрасли. Уже сегодня свыше 15% всей электроэнергии в мире производится атомными станциями, и эта цифра продолжает расти.

За последние четыре десятилетия атомная энергетика и использование расщепляющихся материалов прочно вошли в жизнь человечества. В настоящее время в мире работает около 450 ядерных реакторов. Атомная энергетика позволила существенно снизить энергетический голод и оздоровить экологию в ряде стран. Так, во Франции более 75% электроэнергии получают от АЭС и при этом количество углекислого газа, поступающего в атмосферу, удалось сократить в 12 раз.

Количество действующих в мире атомных станций показана в таблице 13.

В условиях безаварийной работы AC атомная энергетика - пока самое экономичное и экологически чистое производство энергии, и альтернативы ей в ближайшем будущем не предвидится. Радиоактивные вещества широко используются также и в других областях экономики, в медицине и военном деле. Вместе с тем, расширение сферы применения источников радиоактивности ведет к увеличению риска возникновения аварий с выбросом радиоактивных веществ и загрязнением окружающей среды.

Таблица 13.

Количество действующих в мире атомных станций

Страна

Число

блоков

Электрическая

мощность

(МВт)

Доля AC в производстве электроэнергии страны

Географическая плотность электроэнергии AC (кВт/км2)

Россия

31

23242

17%

2,5

Великобритания

38

19593

26%

65

Канада

22

16019

16%

-

США

109

103500

22%

11

Франция

62

61087

80%

gt; 100

Япония

53

45200

33%

gt; 100

В результате таких аварий могут возникать обширные зоны радиоактивного загрязнения местности и происходить облучение персонала радиационно (ядерно) опасных объектов (РОО и ЯОО) и населения, что будет характеризовать создающуюся ситуацию как чрезвычайную. Подобные аварии будут носить характер радиационных и ядерных.

Радиоактивно (ядерно) опасные объекты и их характеристика

К радиационно опасным объектам (POO) относятся объекты, на которых хранятся, перерабатываются, используются или транспортируются радиоактивные вещества, при аварии на которых может произойти облучение ионизирующими излучениями людей, сельскохозяйственных животных и радиоактивное загрязнение окружающей среды.

В состав POO по ряду критериев входят и так называемые ядерно опасные объекты, представляющие наибольшую опасность при авариях.

Ядерно опасные объекты и их классификация.

Под ядерно опасными объектами понимаются объекты, имеющие значительное количество ядерноделящихся материалов (ЯДМ) в различных физических состояниях и формах, потенциальная опасность функционирования которых заключается в возможности возникновения в аварийных ситуациях самоподдерживающейся цепной ядерной реакции (СЦЯР). Например, возникновение СЦЯР с разной степенью вероятности возможно на всех объектах ядерно-топливного цикла (ЯТЦ), кроме горнообогатительных комбинатов.

К ядерно опасным объектам относится большинство объектов ядерного топливного цикла и, в первую очередь, AC, а также ядерные энергетические установки (реакторы) различного назначения; научно-исследовательские реакторы; объекты ядернооружейного комплекса и др.

Атомная энергетика в нашей стране дает около 17% электроэнергии от общего объема ее производства и пока альтернативы ей нет. Строительство атомных станций будет продолжаться, а потому вопрос об обеспечении их безопасной эксплуатации и мер по защите населения от радиоактивного облучения имеет важное значение.

Главным элементом атомной станции (AC) является ядерная энергетическая установка (ЯЭУ) - реактор, работа которого основана на получении тепловой энергии за счет реакции деления ядерного топлива, в качестве которого в большинстве реакторов используется уран-235. Однако цепная реакция деления в природном уране, состоящем из трех изотопов: урана-234, урана-235 и урана-238, - невозможна из-за низкого содержания в нем основного делящегося изотопа - урана-235, доля которого составляет всего 0,7%. Вызвать цепную реакцию можно либо путем повышения в природном уране доли содержания урана-235 (обогащение до 25%), либо путем замедления основной массы образующихся в реакторе нейтронов до тепловых скоростей, используя способность слабо обогащенного урана-235 к более активному захвату тепловых нейтронов.

И тот, и другой способы применяются в атомных реакторах. При этом реакторы, в которых используется замедление нейтронов, называются реакторами на медленных (тепловых) нейтронах, а реакторы с использованием сильно обогащенного урана - реакторами на быстрых нейтронах.

В качестве ядерного топлива в реакторах на медленных нейтронах используется диоксид урана с содержанием урана-235 около 4%, в реакторах на быстрых нейтронах - сильно обогащенный уран либо плутоний- 239. В реактор ядерное топливо помещается в виде сборок твэлов (тепловыделяющих элементов) - циркониевых трубок, заполненных таблетками диоксида урана.

В реакторах на тепловых нейтронах для снижения энергии, а следовательно, и скорости нейтронов, используются замедлители нейтронов: графит (в реакторах типа РБМК) и воду (в реакторах типа ВВЭР).

Тепловая энергия, выделяющаяся в результате цепной реакции деления, отводится из реактора прокачкой через его активную зону жидкого или газообразного вещества - теплоносителя. В последующем это тепло преобразуется в механическую энергию вращения турбины, а затем - в электрическую. Оно может быть использовано также для подогрева воды в коммунальных или производственных сетях теплоснабжения.

На современных AC в качестве теплоносителя используется очищенная и обессоленная вода (в реакторах на тепловых нейтронах) и жидкий металл - натрий (в реакторах на быстрых нейтронах).

Замкнутый контур, в котором циркулирует теплоноситель, называют контуром теплоносителя или первым контуром AC. Вторым замкнутым контуром AC является контур так называемого рабочего тела. Рабочее тело - это вода, которой теплоноситель через парогенератор передает тепло из реактора и которая в виде пара высокого давления вращает турбину генератора, вырабатывающего электроэнергию.

В некоторых типах AC вода выполняет одновременно роль и теплоносителя и рабочего тела, циркулируя в одном контуре. Такие станции называются одноконтурными. В двухконтурных станциях высокорадиоактивный теплоноситель и рабочее тело в целях большей безопасности заключены в раздельные контуры, сообщающиеся через теплообменник. Там, где требуется особо высокая степень очистки воды от

радиоактивных веществ (например, при использовании ее в сетях теплоснабжения городов), строятся трехконтурные станции

Разнос контуров теплоносителя и рабочего тела связан с обеспечением радиационной безопасности, ибо теплоноситель первого контура, где и возникает большинство аварийных ситуаций, высоко радиоактивен.

Поэтому в одноконтурных AC любая протечка радиоактивной воды или выход пара высокого давления - это угроза безопасности для людей и, прежде всего, для персонала станции.

Двухконтурные AC и тем более трехконтурные AC с реакторами ВВЭР являются более безопасными, чем одноконтурные, так как теплоноситель и элементы второго и третьего контура слабо радиоактивны или не радиоактивны.

Безопасность трехконтурных AC обусловлена также наличием внешнего защитного корпуса, выполненнего из высокопрочных металлов, в котором по типу «матрешки» заключены страховочный корпус и корпус реактора, что исключает в случае разрушения реактора выход радиоактивности в окружающую среду.

Основными источниками ионизирующих излучений на AC являются: в активной зоне реактора - радиоактивные продукты деления, а вне ее - различное оборудование и элементы контура, в процессе работы получающие наведенную радиацию.

Для обеспечения надежной работы AC и радиационной безопасности персонала и населения проектами предусматриваются соответствующие системы безопасности.

Общие сведения об авариях на радиационно (ядерно) опасных объектах.

Под аварией на POO (ЯОО) понимается нарушение штатного режима работы объекта с выбросом радиоактивных веществ (PB), приводящее к облучению персонала, населения и радиоактивному загрязнению окружающей среды.

Поражающими факторами аварии, как правило, будут: на объекте аварии - ионизирующее излучение как непосредственно при выбросе радиоактивных веществ, так и при радиоактивном загрязнении территории объекта; ударная волна (при наличии взрыва при аварии); тепловое воздействие и воздействие продуктов сгорания (при наличии пожаров при аварии); вне объекта аварии - ионизирующее излучение как поражающий фактор радиоактивного загрязнения окружающей среды.

Из всех поражающих факторов, возникающих в результате аварии на POO (ЯОО), наибольшую и специфическую опасность для жизни и здоровья людей представляет ионизирующее излучение (ИИ).

Ионизирующие излучения - квантовые (электромагнитные) или корпускулярные (поток элементарных частиц) излучения, под воздействием которых в среде из нейтральных атомов и молекул образуются положительно или отрицательно заряженные частицы - ионы.

При искусственно вызванном распаде ядер вещества (ядерный взрыв, работа ядерного реактора или ускорителя электронных частиц и т. д.) имеет место также нейтронное излучение.

Радиоактивность, наблюдающаяся у ядер элементов, существующих в природных условиях, называется естественной, а у изотопов, полученных в результате ядерных реакций, - искусственной.

Виды ионизирующих излучений. Радиоактивные вещества в ходе их распада испускают альфа-, бета-частицы, гамма-излучения и нейтроны.

Альфа-частицы - это тяжелые положительно заряженные ядра гелия, обладающие высокой ионизирующей, но крайне слабой проникающей способностью Длина их пробега в воздухе составляет 2,5 см, а в биологической ткани - 31 мкм.

Бета-частицы - электроны, имеющую меньшую, чем у альфа-частиц, ионизирующую, но большую проникающую способность. Длина их пробега в воздухе более

15 см. Вместе с тем, они в значительной степени задерживаются одеждой, обувью и кожным эпителием человека.

Гамма и рентгеновское излучение - электромагнитные излучения высокой энергии и сравнительно слабой ионизирующей способности. Они могут проходить сотни метров в воздухе, проникать через преграды из вещества с большой плотностью, в том числе и через тело человека.

Нейтронное излучение - поток электрически нейтральных частиц - нейтронов, способных вследствие этого беспрепятственно проникать вглубь атомов облучаемого вещества. Достигая ядер атомов, нейтроны либо поглощаются ими, либо рассеиваются на них, теряя значительную часть энергии и скорость. Особенно большое количество энергии (до 50%) нейтроны теряют при столкновении с почти равными им по весу ядрами атомов элементов. Поэтому вещества, имеющие минимальное количество электронов вокруг ядра (вода, графит, азот), широко используются как для защиты от нейтронного излучения, так и для замедления движения нейтронов.

Нейтронный поток так же, как и гамма-излучение, обладает большой проникающей способностью через различные вещества и преграды, в том числе и через тело человека. При этом в результате облучения нейтронами атомных ядер химических элементов окружающей среды возникает наведенная радиация, когда последние сами становятся источниками ионизирующих излучений.

Источники ионизирующих излучений. Все источники ионизирующих излучений делятся на природные (естественные) и техногенные, связанные с деятельностью человека. К естественным источникам относятся космические источники и природные радионуклиды, создающие природный радиационный фон, за счет которого человек получает за год дозу около 1,5 мЗв. Источники ионизирующих излучений техногенного характера можно условно разделить на технологические (дающие ионизирующие излучения как побочный продукт) и генерирующие (специально генерирующие ионизирующее излучение). Излучения техногенного характера дают среднегодовую дозу около 1 мЗв. В целом среднее значение суммарной годовой дозы за счет излучения естественных и техногенных источников составляет 2-3 мЗв. Это так называемый естественный техногенно-измененный радиационный фон.

Воздействие ионизирующих излучений на население. Облучение, не превышающее значений нормального радиационного фона, не оказывает влияния на здоровье людей. Однако, если облучение вызвано ионизирующим излучением, превышающем значения нормального фона, его воздействие может вызвать серьезные заболевания и даже лучевую болезнь, вплоть до летального исхода.

Вредное воздействие ионизирующего излучения на человеческий организм возможно в результате как внешнего облучения, когда источник излучения находится вне организма, так и внутреннего, возникающего при попадании радиоактивных веществ внутрь организма (с пищей, пылью или водой). При этом в результате внешнего облучения человек подвергается воздействию ионизирующего излучения только во время пребывания его вблизи от источника излучения. Внутреннее облучение действует длительно, до тех пор, пока радиоактивные вещества не будут выведены из организма естественным путем или в результате радиоактивного распада.

Последствия облучения организма заключаются в разрыве молекулярных связей; в изменении химической структуры соединений, входящих в состав организма; в образовании химически активных радикалов, обладающих высокой токсичностью; в нарушении структуры генного аппарата клетки. В результате изменяется наследственный код и происходят мутагенные изменения, приводящие к возникновению и развитию злокачественных образований, к наследственным заболеваниям, к врожденным порокам развития детей и появлению мутантов в последующих поколениях.

Все они могут быть разделены на соматические, когда эффект облучения возникает у облученного, и наследственные, если он проявляется у потомства.

Характер действия ионизирующих излучений на организм зависит от величины поглощенной дозы, времени облучения, мощности дозы, площади или объема облучаемых тканей и органов и вида облучения. Опасными являются любые дюзы облучения, даже на уровне фоновых. При малых дозах облучения биологический эффект носит стохастический (вероятностный) характер, причем вероятность его пропорциональна дозе, но не имеет дозового порога, а тяжесть заболевания не зависит от нее. При относительно больших дозах облучения биологический эффект носит нестохастический характер, когда имеется наличие дозового порога, выше которого тяжесть поражения уже зависит от величины дозы. Учитывая это обстоятельство, а также то, что вероятность заболевания при малых дозах облучения (в целом) крайне мала, при рассмотрении вопросов защиты населения имеется в виду, в основном, нестохастический характер облучения, когда отрицательные последствия облучения могут быть предотвращены установлением порога дозы.

Фактор времени имеет важнейшее значение для последствий облучения в связи с процессом восстановления, протекающим в тканях и органах. При малой мощности дозы скорость развития поражений соизмерима со скоростью восстановительных процессов. С увеличением мощности дозы процессы восстановления отстают от разрушительных процессов, а это приводит к ускоренному развитию лучевой болезни.

По характеру распределения дозы во времени различают острое и пролонгированное, одноразовое и фракционированное облучение. Под острым понимают кратковременное облучение при высокой мощности дозы (децигрей в минуту и более), под пролонгированным - относительно продолжительное облучение при низкой мощности дозы (доли грея в час и менее).

Как острое, так и пролонгированное облучение может быть однократным или фракционированным, когда между дозами облучения имеются интервалы. Кроме того, известно хроническое облучение, проходящее длительно и в малых дозах.

Так как альфа- и бета-излучения обладают незначительной проникающей способностью, они не могут проходить через одежду и кожный покров к внутренним органам человека. Вместе с тем, облучение бета-частицами открытых участков тела человека способно вызывать лучевые ожоги («ядерный загар»), последствиями которых могут быть различные заболевания кожи, вплоть до онкологических. Кроме того, частицы, обладающие наибольшей энергией (в первую очередь бета-частицы), могут проникать через кожу непосредственно в кровоток. Однако наибольшую опасность корпускулярные излучения представляют при внутреннем облучении - попадании их источников внутрь организма (с пищей, водой и пылью). Обладая высокой биологической активностью (особенно а-частицы), альфа- и бета-излучения воздействуют непосредственно на внутренние органы и кровоток. Защита от их воздействия обеспечивается исключением попадания радиоактивных веществ на кожные покровы (защищают любые виды одежды) и внутрь организма (контроль загрязнения воды и продуктов, применение СИЗОД).

Вследствие способности фотонных излучений и нейтронного потока проходить через преграды, одежду и тело человека, ионизируя все его структуры, они представляют одинаковую опасность и при внешнем, и при внутреннем облучении.

При фотонном облучении степень поражения организма, кроме поглощенной дозы, в значительной мере зависит от площади облучаемой поверхности. Чем меньше ее размеры, тем меньше биологический эффект. Так например, при облучении участка тела площадью 6 см2 с дозой 4 - 5 Зв заметного биологического эффекта не наблюдается, при такой же дозе на все тело - 50% облученных может погибнуть.

Считается, что радиация не имеет ни вкуса, ни запаха, однако это справедливо лишь при относительно небольших мощностях дозы. Te, кому приходилось работать при значительных уровнях радиации, заметили, что в этом случае имеются и органолептические ее воздействия. Исследования показали, что при мощности дозы более 250 мЗв/ч на воздухе (20 мЗв/ч - в помещении) и по мере дальнейшего ее нарастания могут ощущаться: специфический запах (озон), учащение пульса и металлический привкус во рту, наступление эйфории, раздражение носоглотки и глаз, и, наконец, рябь в глазах и чувство уплотнения воздуха, свидетельствующие об очень высоких уровнях радиации (500 - 1000 мЗв/ч и более).

Радиационные поражения человека с высокой степенью вероятности могут возникать при облучениях, превышающих определенный предел. Так, при общем однократном облучении с дозой в 1 Зв и более у каждого пострадавшего развивается острая лучевая болезнь (ОЛБ). Облучение с дозой 6 - 10 Зв ведет к крайне тяжелой форме ОЛБ, когда без лечения возможен летальный исход. Однако при современных методах лечения надежда на выздоровление есть и при облучении более 6 Зв. Доза в 10 Зв и более считается абсолютно смертельной.

Облучение с эффективной дозой свыше 200 мЗв в течение года рассматривается как потенциально опасное. Лица, подвергшиеся такому облучению, должны немедленно выводиться из зоны облучения и направляться на медицинское обследование.

Воздействие ионизирующих излучений на окружающую среду. Радиоактивное загрязнение среды приводит к выводу из хозяйственного оборота значительных площадей на длительные сроки (пять периодов полураспада основных загрязнителей) и требует больших материальных затрат на проведение мероприятий по защите населения, проживающего на данной территории, и принятие мер по локализации и ликвидации загрязнения.

Ситуация приобретает чрезвычайный характер, когда в результате радиационных аварий радиоактивные вещества попадают в окружающую среду в большом количестве и загрязнению подвергаются обширные территории.

Радиоактивное загрязнение не всегда связано с аварийной ситуацией, оно может возникать и в безаварийной обстановке: при нарушениях норм безопасности на радиационно (ядерно) опасных объектах, при нарушении правил хранения и использования различных техногенных источников излучения, а также строительных норм и правил, касающихся ограничения ионизирующих излучений.

По критерию возможности локализации аварии системами безопасности AC аварии могут относиться к проектным и запроектным.

Проектными считаются аварии, для которых проектом определены исходные и конечные состояния и предусмотрены системы безопасности, обеспечивающие ограничение последствий аварии установленными пределами. Аварии, вызываемые неучитываемыми для проектных аварий исходными состояниями и сопровождаемые дополнительными по сравнению с проектными авариями отказами систем безопасности и реализациями ошибочных решений персонала, приведшим к тяжелым последствиям, относят к запроектным.

Наибольшую опасность для населения представляют ядерные аварии, носящие, как правило, запроектный характер. Их локализация осуществляется проведением различных организационных и инженерно-технических мероприятий, не связанных с системами безопасности AC (пример - авария на ЧАЭС).

По масштабу аварии могут быть локальными, местными, территориальными, федеральными и трансграничными.

Локальная авария. Радиационные последствия аварии ограничиваются пределами объекта. При этом возможно облучение персонала и загрязнение зданий и соору

жений, находящихся на территории АЭС, выше уровней, установленных для нормальной эксплуатации.

Местная авария. Радиационные последствия аварии ограничиваются пределами пристанционного поселка и населенных пунктов в районе расположения АЭС. При этом возможно облучение персонала и населения выше уровней, установленных для нормальной эксплуатации.

Территориальная авария. Радиационные последствия аварии ограничиваются пределами субъекта Российской Федерации, на территории которого расположена АЭС, и включают, как правило, две и более административно-территориальные единицы субъекта. При этом возможно облучение персонала и населения нескольких административно-территориальных единиц субъекта Российской Федерации выше уровней, установленных для нормальной эксплуатации.

Региональная авария. Радиационные последствия аварии ограничиваются пределами двух и более субъектов Российской Федерации и приводят к облучению населения и загрязнению окружающей среды выше уровней, установленных для нормальной эксплуатации.

Если при региональной аварии количество людей, получивших дозу облучения выше уровней, установленных для нормальной эксплуатации, может превысить 500 человек, или количество людей, у которых могут быть нарушены условия жизнедеятельности, превысит 1000 человек, или материальный ущерб от аварии превысит 5 млн. минимальных размеров оплаты труда, то такая авария будет федеральной.

Трансграничная авария. Радиационные последствия аварии выходят за территорию Российской Федерации либо данная авария произошла за рубежом и затрагивает территорию Российской Федерации.

По критерию нарушений в работе AC, приводящим при авариях и происшествиях к различному характеру радиоактивного загрязнения окружающей среды и требующим принятия определенных мер защиты населения, аварии классифицируются по содержанию понятия «аварийная опасность» (АО) по системе А01-А04 и «происшествиям» (П) - по системе П01-П10.

Для оценки опасности аварий на AC, информации органов управления РСЧС и населения, как правило, используется Международная шкала оценки событий на атомных станциях (в России введена с 1990 г. Аварии.

Глобальная авария (А01). Выброс в окружающую среду большей части продуктов деления активной зоны, приведший к превышению дозовых пределов для запро- ектной аварии. Возможны острые лучевые поражения населения; длительное воздействие на окружающую среду. Необходимо проведение различных мер по защите населения, в том числе эвакуация и отселение.

Тяжелая авария (А02). Выброс в окружающую среду значительной части продуктов деления, приведший к превышению дозовых пределов для проектных аварий.

Возможны поражения населения и воздействие на окружающую среду. Необходимо проведение мер по защите населения.

Авария с риском для окружающей среды (АОЗ). Выброс в окружающую среду продуктов деления, приведший к незначительному превышению дозовых пределов для проектной аварии. Возможно частичное поражение населения и воздействие на окружающую среду.

Необходимо проведение мер по защите персонала AC и населения.

Авария в пределах AC (А04). Выброс в окружающую среду продуктов деления, не превышающий дозовых пределов для проектной аварии Превышение дозовых

пределов внутри AC. Необходимо проведение мер по защите персонала AC. Защиты населения не требуется. Происшествия

Серьезное происшествие. Выброс в окружающую среду продуктов деления выше допустимого выброса без нарушений пределов безопасной эксплуатации. Превышение дозовых пределов внутри AC. Возможны незначительные поражения персонала. Требуется зашита персонала. Защиты населения не требуется.

Происшествия средней тяжести или незначительные. Неработоспособность отдельных каналов систем безопасности или повреждения технологических систем, не приводящие к аварии, без выброса продуктов деления. Защиты персонала и населения не требуется.

Характер радиоактивного загрязнения окружающей среды при авариях на AC. При аварии на AC с взрывом (разгерметизацией) реактора в результате оседания продуктов выброса возникает радиоактивное загрязнение окружающей среды, которое вместе с облаком газоаэрозольной смеси радионуклидов создает мощный поток ионизирующих излучений, являющийся основным поражающим фактором для населения, проживающего за пределами промышленной зоны AC. При этом, прогнозирование возможного характера и масштабов радиоактивного загрязнения местности и атмосферы представляет собой сложный процесс и является весьма ориентировочным, так как зависит от исходных параметров и характера аварии, постоянно меняющихся метеоусловий, наличия геопатогенных зон и других факторов. Кроме того, радиоактивное загрязнение местности будет иметь ряд других особенностей, влияющих на характер мер по защите населения и территорий. Вследствие большой продолжительности выбросов и неоднократной перемены за это время направления ветра радиоактивное загрязнение в рассматриваемых условиях будет иметь форму широкого сектора или круга, охватывающего значительную площадь. При ликвидации аварии на ЧАЭС сектор, охватывающий зону ветровых перемещений за 10 суток, составил около 270°. Аэрозоли, из которых состоит радиоактивное облако, имеют мелкодисперсный характер с размером частиц 2 мкм и менее, вследствие чего они обладают высокой проникающей способностью через фильтры защитных средств, что способствует их поступлению (прежде всего биологически опасных «горячих частиц») в органы дыхания человека даже при наличии фильтрующих СИЗ.

При оседании на местности и различных поверхностях мелкодисперсные частицы глубоко проникают в грунт, любые микротрещины, краску и т. п., что способствует высокой степени адгезии (удерживаемости) их на поверхности и существенно затрудняет проведение дезактивации. Радиоактивное загрязнение местности в рассматриваемых условиях будет иметь неравномерный «пятнистый» характер, когда участки с высокими уровнями радиации могут обнаруживаться на большом удалении от источника загрязнения. Кроме того и на поверхности самих «пятен» уровни радиации могут иметь мозаичное расположение. На образование «пятен» и «мозаики» влияют атмосферные осадки, вертикальные перемещения воздушных масс в приземном слое атмосферы, а также наличие гравитационных аномалий. В чернобыльских зонах загрязнения вблизи AC, где выпадали сравнительно крупные частицы, «цезиевые пятна», как правило, совпадают с участками местности, где гравитация имеет наибольшие значения. С удалением от AC на 50 - 100 км и более основную роль в образовании пятнистости полей играют, в основном, метеорологические факторы. Вместе с тем и в уже сформировавшихся зонах загрязнения в результате ветровых переносов и осадков может наблюдаться

миграция радиационных загрязнителей. Все это затрудняет использование результатов прогнозирования и требует проведения регулярного радиационного контроля. Вещественный спад активности радионуклидов при загрязнении в результате аварии на AC происходит значительно медленнее и более плавно, чем при загрязнении от ядерных взрывов, а следовательно, и загрязнение в результате аварии на AC будет продолжаться значительно дольше, чем аналогичное (по исходным уровням радиации) при ядерном взрыве

Общие сведения о радиационной обстановке и ее контроле.

Под радиационной обстановкой понимаются масштабы и степень ионизации окружающей среды естественными и искусственными источниками. В зависимости от степени ионизации среды радиационная обстановка может быть нормальной, аномальной и радиоактивным загрязнением.

По критерию мощности эквивалентной дозы (H) обстановка может быть нормальной при H до 0,6 мкЗв/ч, аномальной при H от 0,6 до 1,2 мкЗв/ч и радиационным загрязнением при H gt; 1,2 мкЗв/ч.

По критерию эффективной годовой дозы (Нэф) обстановка считается нормальной, если население, проживающее на данной территории, получает в год не более 1 мЗв, исключая природные и медицинские источники излучения

Контроль радиационной обстановки заключается в проведении радиационного мониторинга и оценки фактической обстановки, прогнозирования ее развития и, на основании сравнения этих данных с предельно допустимыми показателями, определении необходимости принятия мер по защите населения и территорий и нормализации радиационной обстановки.

Государственный контроль радиационной обстановки осуществляется на всей территории РФ в целях систематического предоставления соответствующей оперативной информации органам государственной власти, заинтересованным министерствам и ведомствам для принятия необходимых мер по обеспечению радиационной безопасности населения

Особое внимание уделяется радиационному контролю районов расположения POO (ЯОО) на этапах их строительства, эксплуатации (особенно при аварийных ситуациях) и при выводе их из эксплуатации

Непосредственно проведение мониторинга радиационной обстановки и ее прогнозирование осуществляется подразделениями Федеральной службы по гидрометеорологии и мониторингу окружающей среды (Росгидромет), сетью наблюдения и лабораторного контроля (СНЛК) ГО в составе РСЧС, Единой системой выявления последствий применения ОМП (ЕС-ВОП) MO России, а также различными подразделениями наблюдения и контроля профильных министерств и ведомств, радиационно (ядерно) опасных объектов. Мониторинг фактической радиационной обстановки осуществляется с помощью приборов, систем и средств радиационного контроля (ПСС PK).

<< | >>
Источник: Осетров Г.В.. Безопасность жизнедеятельности: учебное пособие. - М.: Книжный мир, -232 с.. 2011

Еще по теме Защита населения и территорий при авариях на радиационно (ядерно) опасных объектах с выбросом радиоактивных веществ в окружающую среду Аварии на радиационно (ядерно) опасных объектах и радиоактивное загрязнение окружающей среды:

  1. Мероприятий по защите населения и территорий при авариях на радиационно (ядерно) опасных объектах
  2. Защита населения и территорий при авариях на химически опасных объектах Поражающие факторы и их влияние на население и территорию при авариях на химически опасных объектах
  3. 2.2. Аварии на радиационно-опасных объектах
  4. Аварии на радиационно опасных объектах
  5. Специфика мероприятий по защите населения и территорий при авариях на химически опасных объектах
  6. ГЛАВА 12 Аварии с выбросом радиоактивных веществ
  7. Защита населения и территорий в условиях электромагнитного загрязнения окружающей среды техногенными источниками
  8. Мероприятия по защите населения и территорий в условиях электромагнитного загрязнения окружающей среды
  9. Прогнозирование экологической обстановки при авариях на химически опасных объектах
  10. 3.1.2. Оценка радиационной обстановки при применении ядерного оружия
  11. 5.3.3. Способы защиты населения при радиоактивном и химическом заражении местности
  12. 1. Организационные и правовые основы охраны окружающей природной среды 1. 1. Государственная политика защиты окружающей среды
  13. Защита населения и территорий при пожарах и взрывах на объектах инфраструктуры
  14. Методология оценки воздействия загрязнения окружающей среды на здоровье населения
  15. Методы оценки воздействия загрязнения окружающей среды на здоровье населения