<<
>>

Основные статистические показатели

Общая психиатрия Тиганов А.С. (под. ред.)

В процессе эпидемиологического анализа приходится постоянно оперировать также такими статистическими понятиями, как интенсивные и экстенсивные показатели, средние величины и т.д.

Экстенсивный показатель — это доля определенного варианта того признака, который в той или другой разновидности встречается во всех изучаемых случаях. Обычно он выражается в процентах. Экстенсивные показатели взаимозависимы: если в изучаемой группе психически больных (то, что все составляющие группу лица, психически больные — это признак) случаи шизофрении (диагноз — вариант этого признака) составляют 60 %, то на прочие заболевания придется 40 %.

Интенсивный показатель — это мера частоты определенного признака среди тех случаев, в которых этот признак может быть, а может и не быть. Если мы говорим, что распространенность шизофрении среди населения составляет 1 на 1000, то это интенсивный показатель. Он не зависит от других интенсивных показателей: среди населения может быть сколько угодно больных с другими заболеваниями и здоровых, а показатель распространенности шизофрении при этом не изменится.

Использование экстенсивных и интенсивных показателей зависит от задачи исследования. Если нужно решить, как распределить имеющийся коечный фонд для лечения пациентов разного возраста, то нужны экстенсивные показатели, характеризующие возраст больных: сколько процентов среди них составляют дети, лица среднего и лица пожилого возраста. Если же нас интересует, у кого чаще отмечаются психические расстройства — у детей, людей старшего возраста или у стариков, то экстенсивные показатели ничего не дадут: может случиться, что процент пожилых среди пациентов будет очень высоким, потому что в городе значительную часть населения составляют пожилые люди. Для решения этой задачи необходимы интенсивные показатели: сколько приходится больных на 1000 детского населения, на 1000 пожилого населения и на 1000 населения среднего возраста.

Тогда сравнение будет адекватным.

Средняя величина (точнее среднее арифметическое) — одно из самых частых понятий, используемых в эпидемиологических исследованиях. Говорят о средней длительности пребывания больного на койке, среднем числе посещений диспансера в день, средней длительности ремиссий и о множестве других средних величин. Не останавливаясь на вычислении среднего арифметического, рассмотрим вопрос о содержательном значении средней величины.

Если утверждается, что, например, средний рост мужчины составляет 175 см, то смысл этого утверждения очень глубок. Существует фундаментальная причина, определяющая именно эту величину: рост — генетически обусловленный признак (именно поэтому мужчины в среднем выше женщин).

Врач сталкивается с множеством подобных явлений. Это размеры и масса живых существ, длительность пребывания больного на койке, количество препарата, нужное для лечения определенного расстройства, и во всех этих случаях средняя величина имеет совершенно четкий смысл: она указывает, что причина явления определяет именно эту характеризующую его величину, а все отклонения от нее определяются влиянием случайностей.

Статистическое распределение количественных характеристик отдельных случаев, относящихся к подобному явлению, всегда бывает так называемым гауссовским, или нормальным (рис. 25). Если желательно использовать для характеристики каких-то данных их среднюю величину, следует проверить, соответствует ли распределение этих данных нормальному; если да, то применение средней величины оправдано, она имеет смысл: именно средняя величина определяется основной причиной изучаемого явления. Однако часто при такой проверке обнаруживается, что данные распределяются иначе. В частности, длительность многих психопатологических состояний имеет экспоненциальное (а не нормальное) распределение, которое свидетельствует о том, что количественная характеристика каждого отдельного наблюдения случайна. Средняя величина в таких случаях не имеет содержания. Именно поэтому в ядерной физике не употребляют понятие "среднее время распада ядер" радиоактивного вещества, а говорят о "периоде полураспада", т.е.

о времени, за которое распадается половина всех имеющихся ядер. Подобно этому не следует характеризовать средними величинами и длительность психопатологических синдромов.

При эпидемиологических исследованиях часто сравнивают две выборки (или более). При этом может возникнуть проблема их несопоставимости (например, выборки очень различаются по возрастной структуре, что мешает решить поставленную задачу). В таких случаях помогает метод стандартизации данных, описанный, например, Н.А.Вигдорчиком (1945). Смысл этого метода заключается в том, что искусственно устраняется различие между выборками по всем факторам, кроме изучаемого.

С проблемой проверки достоверности статистических различий эпидемиолог сталкивается всякий раз, когда сравнивает два показателя. Если в каждой из сравниваемых групп не меньше 20 наблюдений, то на этот вопрос отвечает критерий Стьюдента (Т), вычисляемый по известной формуле:

где p1 и р2 — сравниваемые показатели, n1и n2 — численность подвыборок.

Достоверным считается то различие, при котором разность между показателями в определенное число раз больше, чем сумма их ошибок. Это число (Т) определяется тем уровнем надежности, который принят в данном исследовании. При таком условии число Т (критерий Стьюдента) должно быть больше 2. Если это так, то различие считается достоверным: можно быть уверенным, что по крайней мере в 95 из 100 любых аналогичных выборок различие окажется примерно таким же (плюс-минус ошибка).

Если сравниваемые группы маленькие (содержат менее 20 наблюдений), то для проверки достоверности различий между ними метод Стьюдента непригоден. Поэтому обычно стараются избегать слишком маленьких групп. Однако это не всегда возможно, и тогда приходится применять так называемый точный метод Фишера. С его помощью вычисляется не условный коэффициент (как при методе Стьюдента), а величина вероятности, что полученный результат случаен. Если эта вероятность меньше 0,025, то различие признается достоверным.

Вычисление критерия Стьюдента — вполне выполнимая задача, рассчитать же вероятность случайного результата по методу Фишера труднее.

Помогают специальные таблицы, в которых, зная численность изучаемых групп и различия между ними, можно посмотреть, достоверны ли они [Генес B.C., 1967].

Различия, которые при проверке оказываются статистически недостоверными, могут тем не менее иметь большое значение. Особенно часто это случается, когда сравнивается ряд показателей, характеризующих, например, динамику какого-либо процесса. Важным может оказаться не определение достоверности различий соседних показателей, а закономерность их изменений. Закономерные изменения всегда говорят о чем-то важном, независимо от того, достоверны ли различия между составляющими ее показателями.

Анализируя изменения показателей, постоянно приходится думать, не закономерны ли эти изменения. С распространением компьютерных технологий обработки полученных данных эта задача стала простой. Например, программный пакет "Microsoft Excel" решает ее автоматически, подбирая к экспериментальным данным линию тренда (определяя тенденцию их изменений) и указывая, насколько точно она их описывает.

* * *

Одной из главных методологических проблем при организации эпидемиологических исследований в психиатрии является идентификация больных. Последняя при эпидемиологическом обследовании отличается от обычной клинической диагностики. Массовость материала заставляет эпидемиолога опираться на стандартные диагностические критерии. Это требование вступает в очевидное противоречие со стремлением иметь как можно более добротный в клиническом отношении материал. При компромиссном решении, которое приходится принимать, неизбежно в жертву приносится либо стандартность диагностики, либо степень ее клинической фундированности. Зарубежные авторы, как правило, жертвуют последним, отдавая безусловный приоритет обеспечению сопоставимости материала разных исследователей. Поэтому они уже много лет используют формальные диагностические инструменты (опросники, шкалы, структурированные интервью и т.п.).

Клинико-эпидемиологический метод, описанный ранее и на протяжении многих лет используемый в отделе эпидемиологии Научного центра психического здоровья РАМП, характеризуется тем, что исследователи, применяя его, отдают предпочтение клинической добротности материала, а это затрудняет сравнение полученных результатов с данными зарубежных авторов. Изложенные трудности идентификации больных могут быть, по-видимому, отчасти преодолены использованием МКБ-10, поскольку эта международная диагностическая система снабжена подробной методикой постановки диагноза, обеспечивающей полную стандартность диагностики, без изменения клинического содержания диагноза.

<< | >>
Источник: Тиганов А.С.. Общая психиатрия/ М.: Медицина, 405 стр.. 1999

Еще по теме Основные статистические показатели:

  1. Тема 42. Основные показатели функционирования национальной экономики.
  2. 51. СТАТИСТИЧЕСКИЙ И СЦЕНАРНЫЙ АНАЛИЗ. МОДЕЛИРОВАНИЕ УСЛОВИЙ, РАСЧЕТ И ИНТЕРПРЕТАЦИЯ РЕЗУЛЬТАТОВ СТАТИСТИЧЕСКОГО И СЦЕНАРНОГО АНАЛИЗА В СИСТЕМЕ PROJECT EXPERT
  3. 20.2. МАКРОЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ. ДИНАМИКА МАКРОЭКОНОМИЧЕСКИХ ПОКАЗАТЕЛЕЙ В СТРАНАХ СНГ
  4. Статистическая значимость.
  5. Статистические методы
  6. 5.2 Социально-статистические исследования в первой половине XIX в.
  7. ПРОБЛЕМЫ ИНТЕЛЛЕКТУАЛИЗАЦИИ СТАТИСТИЧЕСКОГО ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ М. М. Лери
  8. 5 "ПОЛИТИЧЕСКАЯ АРИФМЕТИКА" И СОЦИАЛЬНО-СТАТИСТИЧЕСКИЕ ИССЛЕДОВАНИЯ ДО СЕРЕДИНЫ XIX в
  9. ОФИЦИАЛЬНЫЕ ДОКУМЕНТЫ И ИСТОЧНИКИ СТАТИСТИЧЕСКИХ ДАННЫХ
  10. Статистический анализ как метод получения выводов
  11. Раздел II. Социально-статистические основы 3.
  12. 2.2 Адольф Кетле — автор статистической "социальной физики"
  13. Статистическая обработка результатов психолого-педагогического исследования
  14. Статистические оценки сложности задач выявления предпочтений ЛПР