Окислительно-восстановительные ферменты (оксиредуктазы)

К этой группе ферментов относятся: 1) дегидрогеназы, отнимающие водород от окисляемого субстрата, 2) каталазы, расщепляющие перекись водорода, 3) пероксидазы, использующие перекиси для окисления различных соединений.

Окисление субстрата путем дегидрирования представляет собой самый распространенный в живой природе способ окисления. Схематически реакция дегидрирования может быть показана уравнением:

Рисунок

Рисунок

Субстрат (S), отдающий водород, называется донатором, или донором, а фермент, принимающий водород,— его акцептором. Фермент, принявший водород, передает его другим акцепторам: соответствующим ферментам—дегидрогеназам, различным органическим веществам или кислороду воздуха. В любом случае окисление субстрата непременно сопровождается сопряженным восстановлением какого-либо соединения, т. е. реакция является окислительно-восстановительной.

Дегидрогеназы, как все ферменты, специфичны и называются по имени окисляемого субстрата: дегидрирующие этиловый спирт—алкогольдегидрогеназой, изолимонную кислоту—изоцитратдегидрогеназой и т. д.

Все известные дегидрогеназы делятся на две большие группы: анаэробные, не способные использовать в качестве акцептора водорода кислород воздуха, и аэробные, способные передавать водород кислороду воздуха.

Анаэробные дегидрогеназы представляют собой двухкомпонентные ферменты. Их кофермент обладает высокой реакционной способностью. Он отнимает водород от окисляемого субстрата и превращается в восстановленную форму НАД·Н2.

Рисунок

Рисунок

Кофермент других анаэробных дегидрогеназ отличается от НАД тем, что имеет на один остаток фосфорной кислоты больше. В соответствии с этим он называется никотинамидадениндинуклеотидфосфат или сокращенно НАДФ. Так же, как НАД, НАДФ отнимает водород от окисляемого субстрата и превращается в восстановленную форму НАДФ·Н2.

Свой водород анаэробные дегидрогеназы передают аэробным дегидрогеназам или различным органическим соединениям. НАД·Н2, например, способен передать водород уксусному альдегиду, который при этом превращается в этиловый спирт, а фермент переходит в окисленную форму и снова может вступить в реакцию с субстратом. Анаэробные дегидрогеназы, отнимающие водород от окисляемого субстрата, называются первичными деги-дрогеназами. Первичные дегидрогеназы НАД и НАДФ в клетке находятся в состоянии динамического равновесия. Под влиянием специального фермента они способны превращаться друг в друга:

Рисунок

Рисунок

К аэробным дегидрогеназам в числе других относятся ферменты, содержащие в своей активной группе рибофлавин, витамин В2. Эти ферменты называются флавопротеидами (флавус—желтый). В окисленной форме они имеют желтый цвет, в восстановленной—бесцветны. Среди флавиновых коферментов наибольшее распространение имеют флавинмононуклеотид (ФМН) и флавинадениндинуклеотид (ФАД).

ФМН входит в состав очень широко распространенного и хорошо изученного желтого дыхательного фермента, который играет важную роль в окислении углеводов. Субстратом для желтого фермента служит исключительно анаэробная дегидрогеназа и поэтому он называется дегидрогеназой восстановленного НАДФ. Он стоит вторым в последовательной цепочке дегидрогеыаз.

Рисунок

Рисунок

ФАД—это активная группа ферментов, катализирующих окисление аминокислот. Восстановленные формы некоторых флавиновых ферментов способны передавать водород кислороду воздуха, но большинство передает его другим аэробным дегидрогеназам.

Аэробные дегидрогеназы, которые в качестве акцептора водорода используют исключительно кислород, называются оксидазами. При восстановлении оксидазами кислорода образуются вода или перекись водорода. Субстратом для оксидаз служат восстановленные формы анаэробных и аэробных дегидрогеназ, а также различные органические соединения.

Среди оксидаз особенно большое значение имеют полифенолоксидаза—компонент полифенольной системы и цитохромоксидаза, образующая вместе с цитохромами цитохромную систему.

Полифенольная система состоит из хинона, полифенола и полифенолоксидазы. Хинон может служить акцептором водорода для дегидрогеназ. При этом он восстанавливается в полифенол. Полифенолоксидаза отнимает водород от полифенола и передает его кислороду воздуха. Полифенол при этом превращается в хинон и снова воспринимает водород от дегидрогеназы, Путь атомов водорода в полифенольной системе можно представить следующей схемой:

Рисунок

Рисунок

Полифенолоксидаза обнаружена в грибах, высших растениях и некоторых бактериях. Она способна окислять моно-, ди- и трифенолы. Полифенольная система имеет важное значение в процессах дыхания растений.

Цитохромной системе принадлежит основная роль в передаче водорода от анаэробных и флавиновых дегидрогеназ молекулярному кислороду воздуха. В состав цитохромной системы входят убихиноны (жирорастворимые хиноны) и четыре цитохрома, представляющие собой протеиды, простетическая группа которых содержит железо. Железо цитохромов легко принимает и отдает электроны, т. е. легко переходит из окисной формы в закисную и обратно. Суть окислительно-восстановительных реакций, осуществляемых цитохромами, заключается в том, что один из них отнимает электрон от атома водорода, удерживаемого восстановленными формами анаэробных или флавиновых дегидрогеназ, и передает его другим цитохромам. Последний в цепочке цитохромов—фермент цитохромоксидаза. Он передает электрон кислороду воздуха и тем самым активирует его. Такой активированный кислород вступает в реакцию с ионизированным атомом водорода, образуя воду или перекись водорода. Таким образом, цитохромы не участвуют в переносе атомов водорода, а передают только электроны, меняя при этом свою валентность.

Роль цитохромов в окислительных процессах иллюстрируется следующей схемой:

Рисунок

Рисунок

Цитохромы, по-видимому, являются универсальной ферментативной системой. Они обнаружены в клетках животных, растений и бактерий. Они участвуют в процессах дыхания, фотосинтеза и хемосинтеза.

На рис. 21 показаны возможные пути переноса атомов водорода, осуществляемые дегидрогеназами. Как видно из схемы, путь атома водорода от субстрата до кислорода воздуха может быть различным. Рассматривая схему, следует иметь в виду специфичность ферментов и что один и тот же субстрат не всегда окисляется всеми представленными на схеме ферментами. Из схемы видно, что конечным акцептором водорода может быть не только кислород воздуха, но и органические соединения. Следует обратить внимание также на то, что даже в аэробных процессах первая стадия окисления может осуществляться анаэробными дегидрогеназами. Этот путь окисления у большинства микроорганизмов преобладает над всеми другими.

Помимо дегидрогеназ к оксиредуктазам относятся ферменты пероксидаза и каталаза. Обе они представляют собой двухкомпонентные ферменты, в активную группу которых входит трехвалентное железо. Различия в их каталитической функции связаны с особенностями белков-носителей.

Пероксидаза способна окислять различные органические соединения, используя кислород перекиси водорода или органических перекисей. Пероксидаза окисляет полифенолы, ароматические амины и играет важную роль в окислительных процессах,

Рисунок

Рисунок

протекающих в организме. Каталаза расщепляет перекись водорода на воду и молекулярный кислород:

Рисунок

Рисунок

препятствуя накоплению в организме ядовитой перекиси водорода и тем самым предохраняя клетки от отравления.

<< | >>
Источник: Голубовская Э.К.. Биологические основы очистки воды. Учебное пособие. — М.: Высшая школа. — 268 с.. 1978

Еще по теме Окислительно-восстановительные ферменты (оксиредуктазы):

  1. Активная реакция среды и окислительно-восстановительный потенциал
  2. Принципы классификации ферментов
  3. Ферменты
  4. Строение и свойства ферментов
  5. Регуляция синтеза ферментов
  6. Водород
  7. Валентность и степень окисления
  8. Строение и принципы систематики микроорганизмов
  9. 3.6 Обоснование и совершенствование технологии производстваигристых ароматизированных вин
  10. Углеводы
  11. 60. Химические свойства глюкозы и ее применение
  12. Расщепление азотсодержащих соединений
  13. 2.2 Методы исследований
  14. Химический состав клетки
  15. Окисление углеводов
  16. ХИМИЧЕСКАЯ ХАРАКТЕРИСТИКА ЛИТОСФЕРЫ
  17. 5. Изомерия. Электронное строение атомов элементов малых периодов. Химическая связь
  18. 62. Дисахариды
  19. 4.2.1. Тяжелые металлы